

Physical Chemistry

 $\mathbf{PC}~\mathbf{1}$ The bi-directional reaction

 $A_{(s)} = B_{(g)} + C_{(g)} + D_{(g)}$

where the subscripts indicate the physical state of each substance, has a standard *Gibbs* free energy of $-7 \,\text{kJ}$ at the reaction temperature of 400 K. The process takes place in a sealed, isothermal container, and the initial mixture contains 2 mol A, 0.2 mol B and 0.1 mol C and D each. Find the maximum volume of the container for which the equilibrium state is reachable.

(10 points)

PC 2 Let A and B be the two components of a binary system whose liquidphase non-ideality is accurately enough described by the *Hildebrandt* model:

$$G^{E} = H^{E} = K x_{A} x_{B}$$
$$RT \ln \gamma_{A} = K x_{B}^{2} \qquad RT \ln \gamma_{B} = K x_{A}^{2}$$

where K is a temperature–independent parameter, equal to 5820 J/mole, G^E is the molar excess *Gibbs* free energy and H^E is the molar enthalpy of mixing.

A quantity of 7 mol of B (at temperature T^0) is added, slowly, under continuous stirring, to 1 mol of A at the same temperature. The heat capacities of A and B are equal, $C_{P,A} = C_{P,B} = 30 \text{ J/molK}$. The experiment is carried out, at constant pressure, in such a way, that any heat exchange between the system and its sorroundings can be neglected.

a) Show that the solution to the liquid (')—liquid (") equilibrium equations:

$$x_i'\gamma_i' = x_i''\gamma_i'', \quad i = \overline{A, B}$$

always satifies $x'_A = 1 - x''_A$ and use this fact to prove that the phase diagram is symmetric and, further, to compute it as a function $T = T(x_A)$.

- b) Find the equation of the titration curve in $T-x_A$ coordinates. Show that it too is symmetric.
- c) Compute the lowest possible value of T^0 for which no phase split occurs during the titration.

(20 points)